Patm Patm Tatm Tatm Relative Humidity 967.1 [mBar] 96710 [Pa] 22.1 [C] 295.1 [K] 40 [%]

	$\rho_{\text{formatd air}}^{[1]} = \frac{p_d}{R_d T} + \frac{p_v}{R_v T} = \frac{p_d M_d + p_v M_d}{RT}$	<u>n</u>
	where:	
$p_{ m humid}$ air $=$	Density of the humid air (kg/m3)	₽ huun kil air — 1.136949 Kg/m3
$p_d =$	Partial pressure of dry air (Pa)	
$R_d =$	Specific gas constant for dry air, 287.058 J/(kg·K)	
T =	Temperature (K)	0.41337253
$p_{\rm c} =$	Pressure of water vapor (Pa)	
$R_{s} =$	Specific gas constant for water vapor, 461.495 J/(kg·K)	
$M_d =$	Molar mass of dry air, 0.028964 (kg/mol)	
$M_v =$	Molar mass of water vapor, 0.018016 (kg/mol)	
R =	Universal gas constant, 8.314 J/(K·mol)	
	The vapor pressure of water may be calculated from the saturation vapor pressure and relative humidity. It is found by:	
	$p_v = \phi p_{out}$	Pu = 1063.945 [Pa]
$p_{\tau} = d =$	Where: Vapor pressure of water Relative humidity	
$p_{sal} =$	Saturation vapor pressure	
-	The saturation vapor pressure of water at any given temperature is the vapor pressure when relative humidity is 100%. One formula ^[1] used to find the saturation vapor pressure is:	$p_{\rm out} = 6.1078 \times 10^{\frac{7.57}{7+287.3}}$
		Psat = 26.59864 hPa
	uters Tisis demos O Neter	
	where T is in degrees C. Note: This will give a result in hPa (100 Pa, equivalent to the older unit millibar, 1 mbar = 0.001 bar = 0.1 kPa)	Psat = 2659.864 [Pa]
p_d	is found considering partial pressure, resulting in:	
$p_d = p - p_r$		Pd= 95646.05 [Pa]
	Where p simply denotes the observed absolute pressure.	

 $\rho = \frac{p}{R_{\text{specifie}}T}$ 1.1416 [kg/m3] R = 287.058 J/kg K T = Temperature in degrees Kelvin

P = Absolute Pressure in Pa