	Please do not change any of the values in this sheet	
Patm	Atmospheric air pressure - (As recorded from engine data)	980 [mBar]
Patm		98000 [Pa]
Tatm		15 [C]
Tatm		288 [K]
Relative Humidity		65 [%]

 $\rho - \frac{p}{R_{\rm epocifie}T}$

R = 287.058 J/Kg K T = Temperature in degrees Kelvin P = Absolute Pressure in Pa

1.1854 [kg/m3]

Γ

	$\frac{\rho_{lamid}^{[1]}}{_{\text{where:}}} \text{ air } - \frac{p_d}{R_dT} + \frac{p_v}{R_oT} - \frac{p_dM_d + p_vM_d}{RT}$	<u>97</u>		
$p_{\rm humld abr} =$	Density of the humid air (kg/m3)	#humaid als = 1.180379 Kg/m3		
$p_d =$	Partial pressure of dry air (Pa)			
R_{d} –	Specific gas constant for dry air, 287.058 J/(kg·K)			
T =	Temperature (K)	0.425142855		
$p_{\tau} =$	Pressure of water vapor (Pa)			
$R_v =$	Specific gas constant for water vapor, 461.495 J/(kg·K)			
$M_d =$	Molar mass of dry air, 0.028964 (kg/mol)			
$M_{v} =$	Molar mass of water vapor, 0.018016 (kg/mol)			
R =	Universal gas constant, 8.314 J/(K-mol)			
	The vapor pressure of water may be calculated from the saturation vapor pressure and relative humidity. It is found by:			
	$p_v = \phi p_{eat}$	Pu = 1108.398 [Pa]		
$p_c = \phi =$	Where: Vapor pressure of water Relative humidity			
$p_{\rm sat} =$	Saturation vapor pressure			
	The saturation vapor pressure of water at any given temperature is the vapor pressure when relative humidity is 100%. One formula ^[1] used to find the saturation vapor pressure is:	$p_{\rm sat} = 6.1078 \times 10^{\frac{7.87}{7+207.3}}$		
		Psat = 17.05228 hPa		
	where T is in degrees C. Note:	Psat = 1705.228 [Pa]		
	This will give a result in hPa (100 Pa, equivalent to the older unit millibar, 1 mbar = 0.001 bar = 0.1 kPa)			
p_d	is found considering partial pressure, resulting in:			
$p_d=p-p_v$		Pd= 96891.6 [Pa]		
	Where p simply denotes the observed absolute pressure.			